
Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 1 of 22

White Paper

SAFE: Worm Mitigation

Introduction

The past two years have seen the

release of four major worms on the

Internet—CodeRed, NIMDA, SQL Slammer,

and MS Blaster. While other worms have been

released during this time period that target

operating systems such as Solaris and Linux,

these four worms have had the greatest impact

on the Internet. Each worm targeted specific

vulnerabilities in the Microsoft Windows

operating system platform, exploited those

vulnerabilities to install itself on target

systems, and then used these newly infected

systems as launching points of attack against

other systems. While the underlying exploits

used to achieve access to the target hosts varied

between these worms, the methods used to

mitigate and contain the infection remained the

same. This document discusses these

containment and mitigation techniques and

technologies.

Worm Function

Typically, worms are self-contained programs

that attack a system and try to exploit a

vulnerability in the target. Upon successful

exploitation of the vulnerability, the worm

copies its program from the attacking host to

the newly exploited system to begin the cycle

again. A virus normally requires a vector to

carry the virus code from one system to

another. The vector can either be a word

processing document, an e-mail, or an

executable program. The main element that

distinguishes a computer worm from

a computer virus is the requirement of human

interaction to facilitate the spreading of a virus.

Worm Anatomy

Worms are comprised of three primary

components:

• The enabling exploit code

• A propagation mechanism

• A payload

The enabling exploit code is used to exploit a

vulnerability on a system. Exploitation of this

vulnerability provides access to the system and

the ability to execute commands on the target

system. Once access has been obtained through

the enabling exploit, the propagation

mechanism is used to replicate the worm to the

new target. The method used to replicate the

worm can be achieved through the use of

Trivial File Transfer Protocol (TFTP), FTP, or

another communication method. Once the

worm code has been brought to the new host,

the cycle of infection can be started again.

Some worms also contain “payloads,”

including additional code, to further exploit the

host, modify data on the host, or to change a

Web page. A payload is not a required

component, and in many cases, the worm code

itself can be considered the payload. Figure 1

shows a typical worm infection. In this figure,

the first host that the worm infects can be

thought of as “Host Zero” (similar to “Patient

Zero” in biological epidemics). Host Zero

seeks out and finds other vulnerable hosts to

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 2 of 22

exploit and infect with the worm code. These infected hosts then seek out other uninfected systems to attack and exploit if

possible.

Figure 1

Worm Infection and Propagation

Worm Background and Chronology

Network worms and viruses have existed for more than 20 years. One of the most famous worm programs to affect the Internet

was the Morris worm in November 1988. This worm exploited vulnerabilities in thefingerandsendmailprograms of UNIX

systems. At that time, the Internet, then called DARPAnet, consisted of approximately 60,000 hosts. This worm infected

approximately 10 percent of DARPAnet and caused significant outages and slowdowns of mail servers across the DARPAnet.

Since then, many smaller worm infections have appeared across the Internet, and the landscape of the Internet has changed

dramatically.

In May 2001, a worm released on the Internet began to infect hosts running Microsoft’s Windows Internet Information Server

(IIS), as well as systems running the Solaris operating system. This worm infected Solaris systems by exploiting a buffer

overflow vulnerability in the Sun Solstice AdminSuitesadmindprogram. With successful exploitation of the vulnerability on

the Solaris host, the worm copied the rest of its code to the exploited Solaris system and began searching for other systems to

exploit and infect. The worm also contained code to search for hosts running the Windows IIS software and to exploit those

hosts using the Microsoft IIS Extended Unicode Directory Traversal vulnerability (http://www.securityfocus.com/bid/1806),

which allowed the worm to replace the default home page of the Web server. This worm became known as thesadmind/IIS

worm. A characteristic of the sadmind/IIS worm that helped slow its spread was that it relied on two disparate operating

systems and two completely different vulnerabilities.

Two months later, in July 2001, a new worm infection appeared that would significantly raise awareness of the threat posed

by these malicious software programs. CodeRed targeted Microsoft Windows IIS using a vulnerability in the IIS Indexing

Service (http://www.securityfocus.com/bid/2880). While the first variant of this worm did little damage due to a flaw in the

random number generator code used to generate addresses of hosts to exploit, a second variant appeared with the flaw fixed.

This worm, CodeRedv2, spread quickly and became the most widespread and damaging worm to hit the Internet since the

Morris worm. CodeRedv2’s success as a worm relied on the fact that the worm only exploited the vulnerability in the IIS

Uninfected
Hosts

Uninfected
Hosts

Uninfected
Hosts

Uninfected
Hosts

Infected
Host

Infected
Host

Infected
Host

Host Zero

http://www.securityfocus.com/bid/1806
http://www.securityfocus.com/bid/2880

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 3 of 22

Indexing Service as a means of gaining access to the host. This, coupled with the wide deployment of IIS as well as the large

number of unpatched IIS Web servers, contributed to the quick and wide-ranging spread of the worm. An estimated total of

360,000 hosts were infected within a period of 14 hours. Figures 2 and 3 show the spread of CodeRedv2 at the estimated

beginning of and end of the first day of infection, respectively.

Figure 2

Initial CodeRedv2 Infection Spread

Source:http://www.caida.org/ analysis/security/code-red/coderedv2_analysis.xml

http://www.caida.org/ analysis/security/code-red/coderedv2_analysis.xml

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 4 of 22

Figure 3

CodeRedv2 Infection Spread after 24 Hours

Source:http://www.caida.org/ analysis/security/code-red/coderedv2_analysis.xml

CodeRedv2 temporarily replaced the home page of the Web servers it struck with a new page. After a few hours, the original

home page was restored. Unlike previous worms, CodeRed (both the first variant and CodeRedv2) resided completely in

memory and did not store any code on the disk of the Web server. Additionally, the code of the worm indicated that it was

programmed to begin a packet-floodingdenial-of-service (DoS) attack against a hard-coded IP address (at the time, this

address was the IP address of the White House Web serverwww.whitehouse.gov) from the twentieth through the

twenty-seventh of each month.

Shortly after the primary infection of CodeRedv2, another variant of the CodeRed worm appeared—CodeRed II. Like its

predecessors, CodeRed II infected Microsoft IIS Web servers using the vulnerability in the IIS Indexing Service. However,

unlike the CodeRed and CodeRedv2 worms, CodeRed II was not memory-resident. It stored a copy of itself on a server’s disk

and configured the server to start the worm after a reboot. Additionally, the worm copied the cmd.exe program to the IIS scripts

directory, providing a ready-made back door to the server for any attacker to use.

Two months after CodeRed struck the Internet, another large-scale worm struck. Unlike CodeRed, NIMDA was a hybrid

worm; rather, it contained the characteristics of both a wormand a virus. NIMDA spread using several vectors:

• Through e-mail as an attachment (virus)

• Through network shares (worm)

• Through JavaScript by browsing compromised Web sites (virus)

• Through infected hosts actively scanning for additional exploitable hosts (worm)

• Through infected hosts actively scanning for back doors created by the CodeRed and sadmind/IIS worms (worm)

Unlike CodeRed, NIMDA did not appear to exhibit intentional destructive capabilities. To date, NIMDA’s activities have been

restricted to its self-propagation, which has the side effect of a DoS attack.

http://www.caida.org/ analysis/security/code-red/coderedv2_analysis.xml
http://www.caida.org/ analysis/security/code-red/coderedv2_analysis.xml
http://www.whitehouse.gov

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 5 of 22

After the NIMDA infection subsided, the Internet saw the appearance of smaller infections of worms. In January 2003, a new

worm infected the Internet at such a high rate that it was classified as a “flash worm.” This worm, termedSQL Slammer, once

again targeted Microsoft Windows servers. However, this worm targeted servers running Microsoft SQL Server software. The

vulnerability exploited by SQL Slammer had been published in July 2002, and a patch from Microsoft was available at that

time as well. Even though this patch was available for almost six months, SQL Slammer spread with incredibly high

efficiency.

SQL slammer was a 376-byte User Datagram Protocol (UDP)-based worm that infected Microsoft SQL servers through UDP

port 1434. Because of its small size, the worm was contained in a single packet. The fast scanning rate of SQL Slammer was

also achieved because of this small size, as well as the fact that the worm was UDP-based. The worm did not have to complete

a handshake (necessary with TCP-based worms) to connect with a target system. SQL Slammer reached its full scanning rate

of 55 million scans per second within three minutes of the start of the infection and infected the majority of vulnerable hosts

on the Internet within 10 minutes of the start of the infection with an estimated 250,000-300,000 infected hosts overall. A

major consequence of such a fast scanning rate was that edge networks were overwhelmed by the amount of traffic generated

by the worm. SQL Slammer’s doubling rate was approximately 8.5 seconds (the number of hosts infected with the worm

doubled every 8.5 seconds). In contrast, CodeRed II’s doubling rate was on the order of 37 minutes and CodeRed II required

approximately 14 hours to reach a saturation impact limit of 360,000 hosts. CodeRed II also created a DoS situation against

several networks by inadvertently crashing routers by injecting the exploit code to the router’s Web server.

The next major worm infection after SQL Slammer subsided occurred in August 2003. This worm exploited a flaw in the

remote-procedure-call (RPC) code dealing with message exchange over TCP/IP in Microsoft Windows systems. This flaw

was a stack-based buffer overflow occurring in a low-level Distributed Component Object Model (DCOM) interface within

the RPC process listening on TCP/IP ports 135, 139, and 445. The DCOM protocol enables Microsoft software components

to communicate with one another and includes Internet protocols such as HTTP directly over a network. Successful

exploitation of this vulnerability allows an attacker to run code with local system privileges, which is equivalent to the UNIX

root account privileges.

Once MS Blaster successfully exploits a host, it attempts to upload a copy of the worm program to the newly exploited host.

MS Blaster uses TFTP to copy the worm program from the attacking host to the target system. MS Blaster also starts up a

cmd.exe process and binds it to TCP port 4444 of the newly exploited system. This provides any attacker with direct command

line access at the local system privilege level, as discussed above. To access the system, the attacker need only Telnet to TCP

port 4444 on the exploited host. If the worm is successful in copying the MS Blaster program to the target, the worm exploit

code modifies the system registry to ensure that the worm is restarted if the system reboots. It then launches the worm program

on the newly exploited host to begin the cycle again, starting with scanning for more exploitable hosts. MS Blaster also

contained code for a DoS attack. This particular attack was targeted atwindowsupdate.com and would occur based on a

particular date—if the month was between January and August, the worm would try and DoS thewindowsupdate.comaddress

between the sixteenth of the month and the end of the month; if the month was September through December, the worm would

send the DoS traffic every day. The DoS traffic consisted of fifty 40-byte HTTP packets to TCP port 80 of the

windowsupdate.com address. If the worm could not resolve thewindowsupdate.com address, the destination address of the

packets would be set to 255.255.255.255, the local broadcast address.

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 6 of 22

Worm Mitigation

Worm mitigation requires diligence on the part of system and network administration staff. Coordination between system

administration, network engineering, and security operations (SECOPS) personnel is critical in responding effectively to a

worm incident.

Typical incident response methodologies can be subdivided into three major categories.

1. Reaction

2. Recovery

3. Post-mortem

Like other incident response situations, the actual response to a worm infection occurs at the “reaction” phase and can be

further broken down into four subphases:

1. Containment

2. Inoculation

3. Quarantine

4. Treatment

The following paragraphs provide overviews of these four phases. Information about the network implementation of these

phases is provided later in the paper.

Containment

The containment phase involves limiting the spread of a worm infection to areas of the network that are already affected. This

requires the compartmentalization and segmentation of the network in order to slow down or, more preferably, stop the worm

from further infecting other systems. Networks built on the module principles discussed in the SAFE white papers have readily

available “choke points,” where intermodule traffic can be easily restricted and used to contain a worm infection. This should

be done in a manner that prevents currently infected hosts from targeting and infecting systems outside the network. This

requires the use of ingress as well as egress filters on routers and firewalls at various control points within the network.

Inoculation

In parallel with the containment phase, all uninfected systems should be patched with the appropriate vendor patch for the

vulnerability. With the worm infection contained, or at the least, significantly slowed down, the inoculation process further

deprives the worm of any available targets. A network scanner can help identify potentially vulnerable hosts on the network.

The mobile environment prevalent on networks today poses significant challenges to SECOPS and network operations

personnel. Laptops are routinely taken out of the “secure” environment of the corporate LAN and connected to potentially

“insecure” environments, such as home networks and customer networks. Without proper patching of the system, a laptop can

be infected with a worm or virus and can then bring it back into the “secure” environment of the corporate LAN, where it can

infect other systems.

Quarantine

The quarantine phase involves tracking down and identifying infected machines within the contained areas and disconnecting,

blocking, or removing them. This isolates these systems appropriately for the final phase—treatment.

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 7 of 22

Treatment

During the treatment phase, actively infected systems are disinfected of the worm. This can involve simply terminating the

worm process and removing any modified files or system settings that the worm introduced, and patching for the vulnerability

the worm used to exploit the system. In other cases, a complete re-install of the system may be warranted to ensure that the

worm and its byproducts are removed.

Worm Mitigation Axioms

This section outlines general best practices that apply specifically to worm mitigation. These practices are outlined here to

avoid duplication throughout the case studies discussed below.

Keep All Systems Patched for Security Vulnerabilities

The most effective way to mitigate any worm and its variants is to patch all vulnerable systems. This is difficult with

uncontrolled user systems in the local network, and even more troublesome if these systems are remotely connected to the

network via a VPN or remote access server (RAS). Administering numerous systems involves the creation of a standard

software image that is deployed on new or upgraded systems. These images may not contain the latest patches; continually

remaking the image in order to integrate the latest patch may quickly become administratively time-consuming. Pushing

patches out to all systems requires that those systems be connected in some way to the network, which may not be possible.

One solution to management of critical security patches is to create a central patch server that all systems must communicate

with after a set period of time. Any patches that are not applied to a host that is available on the patch server would be

automatically downloaded and installed without user intervention. However, determining which devices are exploitable can

be simplified by the use of security auditing tools that look for vulnerabilities.

Use Host-Based Intrusion Detection Systems (HIDSs) to Protect End Systems

An HIDS operates by detecting attacks occurring on a host on which it is installed. It works by intercepting OS and application

calls, securing the OS and application configurations, validating incoming service requests, and analyzing local log files for

after-the-fact suspicious activity. Typically, there are two modes of operation for HIDS—monitor (alarm only) and enforce.

HIDS performs many security functions, including:

• Analyzing incoming traffic and, through the use of generic rules and known attack signatures, determining if an attack is

present

• Analyzing the server’s actions to determine if they reflect its normal mode of operations

• General OS protection, including buffer overflow prevention and binary modification

HIDSs can have the same problem with exploitation mitigation as discussed previously for applying system patches. However,

HIDS clients can be significantly easier and less obtrusive to install on running systems. Additionally, HIDSs are less likely

to require system interruptions or reboots. To target specific systems for HIDS installation for the current problem, a network

security scanner can be used to identify specific systems that would be considered ideal candidates for installation of the HIDS

software.

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 8 of 22

Deploy Network-Based Intrusion Detection Systems (NIDSs) to Detect Worm Activity

An NIDS operates by first detecting an attack occurring at the network level and then either taking a corrective action itself

or notifying a management system where an administrator can take action. Attacks are discovered by looking for their

signatures in traffic flows in the network. Attack detection triggers NIDSs to send an alarm and then take a preconfigured

action. The two possible actions are “shunning” and TCP resets. Since an NIDS is not in the data path, meaning it receives a

copy of a packet as it traverses through the network verses routing the packet, it cannot filter the first packet in an attack.

Subsequent packets can be filtered via shunning, a feature that modifies the upstream access-control device to block any

further access from the IP address of the attacking system. TCP resets attempt to tear down the TCP connection by sending a

fabricated reset that appears to be from the receiving device to the attacking device.

Anomaly IDSs also provide for the detection of possible infections by using statistical analysis of network traffic to identify

worms. An anomaly IDS can provide quicker identification and detection of worm activity than signature-based NIDSs. This

is due in part to the capability of anomaly-based IDSs to detect small deviations from normal activity through statistical

analysis of network traffic.

Refer to theSAFE: IDS and Logging In-Depth white paper for more information about implementing shunning on

a network—there are special considerations to consider when using this feature.

Use Access Control to Restrict Worm Traffic

Stateful firewalling provides many security features that proactively mitigate worms. First, the stateful inspection engine can

control connection attempts at a granular level by validating proper protocol adherence. This filtering could be used to allow

only inbound connections to a server, and at the same time disallow that server to initiate outbound connections, limiting a

worm’s ability to self-propagate. This is particularly applicable for DMZ server deployments. As discussed in SAFE, servers

normally do not need the ability to establish outbound connections—in most cases, they only need to respond to incoming

requests. Second, stateful firewalling can limit the number of permitted inbound connections to a server so that the server will

not become overwhelmed.

Ingress filtering is typically carried out by access control on the perimeter of the network. It is used to block access to hosts

and services that should not be publicly available. For instance, it is a security best practice to disallow incoming connection

requests to hosts or networking devices, unless those hosts or devices are actively participating in providing a publicly

accessible service.

Egress filtering is also typically carried out by access control on the perimeter of the network. This filtering blocks a local

host’s access outbound out of the network. Devices that do not need outbound Internet access, such as the majority of the

networking devices in the network or servers that only serve the internal environment, should not be allowed to initiate

outbound connections. Additional layers of egress filtering in the network (besides at the WAN edge) could also be used to

disallow an infected public server (or its entire segment, in the case of a server farm) from infecting private internal servers

that were protected by the edge ingress filtering. For more information on access control and filtering, please refer to the SAFE

white papers.

Use Private VLANs to Protect Critical End Systems Within a VLAN

Private VLANs work by limiting the ports within a VLAN that can communicate with other ports in the same VLAN.

Typically, private VLANs are deployed so that the hosts on a given segment can only communicate with their default gateways

and not the other hosts on the network. For instance, if a server is compromised by a worm, it will not be able to initiate

infection attempts to other servers in the same VLAN, even though they exist in the same network segment. This access

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 9 of 22

control is carried out by assigning hosts to either an isolated port or a community port, and is an effective way to mitigate the

effects of a single compromised host. Isolated ports can only communicate with promiscuous ports (typically the router).

Community ports can communicate with the promiscuous port and other ports in the same community. For more information

on private VLANs, visit:

http://www.cisco.com/warp/public/473/90.shtml

Network-Based Application Recognition (NBAR)

NBAR is a classification engine in Cisco IOS® Software that can recognize several application level protocols, including

HTTP via URL/MIME type and protocols that use dynamic port assignments. Once NBAR has classified the traffic,

appropriate quality of service (QoS) policies can be applied to the traffic classes to handle the traffic appropriately.

Mission-critical applications can be given preferential treatment in the allocation of bandwidth, while non-mission-critical

traffic can be marked for best-effort service, policed or blocked. This technology can be useful in slowing down or preventing

worm traffic by using NBAR to police traffic to specific ports and, depending on the policy, either limiting the bandwidth

associated with this traffic or preventing it altogether.

Identify Worm Infected Systems

Use NetFlow to Track Worm Attack Hosts

NetFlow provides network engineers and administrators with several applications that track and identify IP traffic. These

applications include traffic accounting, network monitoring, DoS monitoring, and data mining. This information is

particularly useful in tracking down worm attack hosts, as well as monitoring the progression of a worm through a network.

By using NetFlow to identify worm attack hosts, network operators can implement access-control lists (ACLs) to block traffic

originating from the attacking systems.

Use Sink-Hole Routers to Identify Infected Systems

Sink-hole routers are typically used by a service provider to redirect malicious IP traffic to a single IP address where the traffic

can be examined in greater detail. Service providers can use this concept to identify networks and individual hosts where worm

traffic is originating. This concept can also be applied within an enterprise architecture environment to identify hosts that are

infected by a worm and are actively seeking additional target systems. Setting up a sink-hole router will assist in determining

which systems in the environment are infected when NIDS is not available, either due to insufficient resources to deploy NIDS

or other architectural constraints. This works by using addresses not yet allocated by the Internet Assigned Numbers Authority

(IANA) that some worms will inadvertently attempt to exploit. The sink-hole router advertises these networks locally (only),

and any attempts at reaching them will then be routed to the router. Once received, they can be logged and discarded. The logs

will provide a list of infected hosts. For more information on how to configure this, visit:

http://www.cisco.com/public/cons/isp/security/

Use Committed Access Rate (CAR) to Rate-Limit Traffic

CAR can be used to rate-limit traffic based on a set of criteria, and provides for configurable actions such as transmit, drop,

set precedence, or set QoS group when the traffic meets or exceeds the rate limit. These criteria include such metrics as

incoming interface, IP precedence, QoS group, and IP access list criteria. CAR is typically applied to traffic on a router and

performs two basic QoS functions:

http://www.cisco.com/warp/public/473/90.shtml
http://www.cisco.com/public/cons/isp/security/

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 10 of 22

• Bandwidth management through rate-limiting

• Packet classification

By using CAR, network engineers can classify and control traffic into and out of their networks, thereby providing a capability

to prevent the bandwidth saturation seen by several service providers during the SQL Slammer worm propagation. For more

information on CAR, visit:

http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_configuration_guide_chapter09186a00800c 75ce.html

Implement Virus Scanning Throughout the Network

Virus scanning software provides real-time host attack mitigation against known malicious code and viruses. As with NIMDA,

viruses may have multiple paths into the system, including e-mail, browsing, and file exchange. These paths may themselves

intrinsically provide multiple vectors into the system. Web pages, for instance, may use ActiveX, Java, and JavaScript to load

remotely available code in order to provide additional capabilities. However, all of these mechanisms are entry points for

executing malicious code on the system. In most cases, the user is prompted to allow the remote code to execute. Due to lack

of user education, most will click “yes” without hesitation. Worse yet, older Web browsers will not even prompt the user and

will execute the code automatically. In order for virus scanning to be successful, the following should be completed at regular

intervals:

• Routine host local file scanning

• Routine virus list and signature updating

• Routine monitoring of alerts generated by the host scanners

Virus scanning should be conducted both at the inbound and outbound mail gateways, as well as on the end hosts where e-mail

is read. Virus scanning should be conducted as a complement to HIDS deployment. While HIDS may not be deployable across

all systems on the network (due to limitations in resources or limitations in the HIDS), antivirus scanning on mail gateways

can be accomplished with relative ease and provides significant protections against e-mail-borne attack code.

Implement Denial of Service Best Practices

CodeRed and MS Blaster each contained code that directed the worms to execute a distributed denial of service attack against

www.whitehouse.gov andwindowsupdate.com respectively. Additionally, the spread of a worm can be fast enough that the

traffic generated by the worm itself is enough to create a denial of service condition as was demonstrated by SQL Slammer.

As worms represent an effective way to spread denial of service attack agents across a wide range of networks in a short period

of time it is critical that, along with the best practices described above network personnel should also implement the necessary

steps to help mitigate these types of attacks. These steps include securing the network infrastructure devices such as turning

off unnecessary services, restricting access to management ports. Additionally, the use of QoS as well as other traffic policing

methods to help restrict the spread of the infecting code should be implemented.

If a worm infection does occur on the network and it is determined that the worm code contains a denial of service attack

against a website, DNS poisoning may mitigate the effects of that attack. DNS poisoning includes adding an address record

in the local DNS hosts for the target system such that the IP address resolves to a non-existent host or the localhost address.

The intention is to redirect the worm traffic and prevent it from reaching the actual target system. Using the localhost address

results in the worm executing the DoS attack against the worm host itself. Care must be used when implementing DNS

poisoning. Tests with MS Blaster utilizing DNS poisoning resulted in unexpected behavior from the worm.

http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_configuration_guide_chapter09186a00800c75ce.html
http://www.whitehouse.gov
http://www.windowsupdate.com

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 11 of 22

Case Studies

The following case studies cover the four major worms that have infected the Internet since 2001. In each case, the mitigation

techniques are most applicable to containment and quarantine. Not all axioms are applied across each case study, only the

axioms that were deemed most effective. However, just because a mitigation method is not discussed in a case study does not

indicate that the mitigation method is inappropriate in that particular situation.

CodeRed v2

The following links provide information regarding infection mitigation of the CodeRed worm and its variants on Microsoft

and Cisco Systems products:

• http://www.cisco.com/warp/public/707/cisco-code-red-worm-pub.shtml

• http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS01-033.asp

Many vendor products install and use IIS to provide Web access for remote management and reporting, and these will also be

vulnerable unless patched. If it is not possible to patch all systems in a timely manner, consider deploying the technologies

discussed in the “Worm Mitigation Axioms” section above. Consider using these technologies proactively to mitigate future

attacks by variants of CodeRed or other attacks altogether.

Host-Based Intrusion Prevention Systems (IPS)

In the case of CodeRed and its variants, an HIPS secures IIS by disabling the indexing service. It will also send an alarm to

the centralized monitor console indicating that an exploitation attempt was intercepted.

NIDS

Shunning is not recommended for attack mitigation of CodeRed. Since CodeRedv1 and v2 contain the attack in a single

packet, NIDS cannot stop the attack. NIDS does, however, provide visibility by alarming when CodeRedv1 and v2 attacks

traverse the network. NIDS is able to stop CodeRed II attacks with high probability through the use of TCP resets, as CodeRed

II uses multiple packets. For more information on NIDS, visit:

http://www.cisco.com/go/ids

Access Control

As it pertains to CodeRed, incoming HTTP connections would be blocked from accessing any possibly exploitable user

systems or non-publicly available Web servers. These same filters, however, had to allow access to a publicly available Web

presence or e-commerce server. Ideally, these public servers were under tight administrative control and had the latest patches,

but in too many cases, they were not. Ingress filtering would, in effect, block CodeRed exploitation attempts targeted at user

systems.

If a device is compromised, egress filtering prevents the system from successfully executing a distributed DoS (DDoS) attack

against an external network. It also may help prevent the compromised system from infecting other hosts outside the network

perimeter, since the traffic will be intercepted and dropped at the perimeter of the network. This guards against the DDoS

attack flooding the Internet link and interfering with legitimate inbound or outbound traffic.

http://www.cisco.com/warp/public/707/cisco-code-red-worm-pub.shtml
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS01-033.asp
http://www.cisco.com/go/ids

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 12 of 22

NBAR

NBAR recognizes the CodeRedv1 and v2 URL request, but not the CodeRed II URL request. This is because CodeRed II

spreads the GET request over multiple packets, and NBAR typically only inspects the first packet. Unlike an NIDS, NBAR

can immediately classify CodeRedv1 and v2 traffic and drop the packet before reaching the server, and can be used inbound

and outbound to mitigate CodeRed’s effects. For more information on NBAR, visit:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121newft/121limit/121e/121e2/nbar2e.htm

NIMDA

NIMDA infected vulnerable target systems through several means, including e-mail, Web browsing, and actively looking for

and exploiting the back doors left behind by the CodeRed II worm. The most effective mitigation technique against NIMDA

is patching all vulnerable systems, which is difficult with uncontrolled user systems in the local network and even more

troublesome if the systems are remotely connected to the network via a VPN or RAS. However, determining which devices

are exploitable can be simplified by the use of security auditing tools that look for vulnerabilities in server systems. For local

workstations, the PC’s browser and e-mail client may need to be patched. The following link provides information regarding

infection mitigation on Microsoft products:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS01-044.asp

Antivirus

Additional NIMDA mitigation methods included updating all virus scanning software with the latest virus lists, running local

scans on any systems where infection is suspected, and determining which devices in the network were still infected or

vulnerable, in case they were missed during the patching and virus scanning. These tasks can be carried out with network

scanners, as well as with analyzing alarms received from an IDS.

HIDS

When a worm attempts to compromise an HIDS-protected Web server, the attack will fail and the server will not be

compromised. HIDS blocks the wormlike infection methods (spreading via Microsoft IIS vulnerabilities) by locking down

the Web server. HIDS also prevents directory traversal and remote code execution attacks as well as unauthorized changes to

Web content, thus limiting the capability of the worm to alter Web pages in order to spread itself to other servers. Finally,

HIDS will prevent the Web server from being compromised via HTTP and IIS exploits through attack signature detection.

The following HIDS rules prevent NIMDA from succeeding:

• IIS Directory Traversal

• IIS Directory Traversal and Code Execution

• IIS Double Hex Encoding Directory Traversal

Note that the viruslike, manual infection methods, such as opening an e-mail attachment, manually executing an infected file,

and browsing to an infected Website, are not blocked by HIDS. These can be mitigated by the security best practices covered

in SAFE, including virus scanning and thorough education of the user base. For instance, administrators should not run client

e-mail applications or browse the Web on production Web servers. It is also a best practice not to run network shares on pubic

servers.

http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121newft/121limit/121e/121e2/nbar2e.htm
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS01-044.asp

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 13 of 22

NIDS

An NIDS identifies many of the Web application attacks used by the NIMDA worm and provides details about the affected

and compromised hosts.

The following Cisco IDS Network Sensor alarms will be triggered by the NIMDA worm:

• WWW WinNT cmd.exe Access (SigID 5081)

• IIS CGI Double Decode (SigID 5124)

• WWW IIS Unicode Attack (SigID 5114)

• IIS Dot Dot Execute Attack (SigID 3215)

• IIS Dot Dot Crash Attack (SigID 3216)

NIDS operators will not see an alarm that identifies NIMDA by name. They will see a series of these alarms as NIMDA tries

different exploits to compromise the target. These alarms will identify the source address of hosts that have been compromised

and should be isolated from the network, cleaned, and patched.

SQL Slammer

The first and most effective manner in which to mitigate the SQL Slammer worm is to patch all vulnerable systems. As with

CodeRed and NIMDA, patching may be difficult with uncontrolled user systems in the local network and even more

troublesome if the systems are remotely connected to the network via a VPN or RAS. However, determining which systems

are exploitable can be simplified by using security-auditing tools that look for vulnerabilities, such as the ones listed at the

end of this paper.

Scanning for systems that may be running the Microsoft SQL Resolution Service provides for quick identification

of potentially vulnerable hosts. After these vulnerable systems are identified, they can be patched to remove the vulnerability.

Monitoring log files for hits on the ACLs discussed above can identify hosts already infected by the SQL Slammer worm. The

following links provide information about infection mitigation on Microsoft SQL products:

• http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-039.asp

• http://www.microsoft.com/technet/security/virus/alerts/slammer.asp

Access Control

Stateful firewalling provides numerous security features to proactively mitigate the SQL Slammer worm. This filtering can be

used to allow only inbound connections to a SQL server, and at the same time, to disallow that SQL server from initiating

outbound connections—limiting the ability of the worm to self-propagate.

As discussed in the SAFE Blueprint, SQL servers do not normally need the ability to establish outbound connections to

external systems. In most cases, they need to respond only to incoming SQL requests. In addition, stateful firewalling has the

capability of limiting the number of permitted inbound connections to a server so that the server does not become

overwhelmed. In the case of SQL Slammer, this limiting blocks inbound exploitation connection attempts.

If stateful firewalling is not possible, the next most effective method to contain this worm is the application of ingress and

egress filters or ACLs blocking port 1434 UDP. Ingress filtering is typically performed by access control on the perimeter of

the network. Incoming SQL connections would be blocked from accessing any possibly exploitable user systems or

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-039.asp
http://www.microsoft.com/technet/security/virus/alerts/slammer.asp

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 14 of 22

non-publicly available SQL servers. These same filters, however, would need to allow access to a publicly available SQL

presence or e-commerce server. Ideally, the public servers are under tight administrative control and have the latest patches.

Ingress filtering would, in effect, block SQL Slammer exploitation attempts targeted at user systems.

Egress filtering prevents compromised SQL servers from launching a DDoS attack against an external network because the

traffic is intercepted and dropped at the perimeter of the network. This setup also guards against the DDoS attack flooding the

Internet link and interfering with legitimate inbound or outbound traffic. Additional layers of egress filtering in the network,

in addition to those at the WAN edge, can also be used to disallow an infected public SQL server (or its entire segment for the

case of an SQL farm) from infecting private internal servers that are protected by the edge ingress filtering. For more

information about access control and filtering, see the SAFE Blueprint white papers. A sample ingress and egress filter rule

to add to existing ACLs is provided below.

Cisco IOS ACLs

Care must be taken when considering whether to use thelog-input argument to theaccess-list command. It is possible to

substantially increase the CPU usage on the router because of the logging on the ACL. If router performance degrades due to

the introduction of these ACLs, discontinue the logging on the first ACL.

access-list 101 deny udp any any eq 1434 log-input
access-list 101 permit ip any any

A more fine-tuned approach would be to create an ACL for the offending SQL Slammer worm traffic and then use class-based

policing to drop the packets at the ingress interface.

1. Create ACL

access-list 101 permit udp any any eq 1434

2. Match on ACL and packet length

class-map match-all slammer_worm

match access-group 101

match packet length min 404 max 404

3. Use class-based policing to drop matching packets at the ingress interface

policy-map drop-slammer-worm

class slammer_worm

police 1000000 31250 31250 conform-action drop exceed-action drop violate-action drop

After further worm infection has been prevented through the use of ingress and egress filters, the next step would

be identifying and tracking vulnerable hosts, as well as systems that may already be infected.

HIDS

The HIDS response to SQL Slammer is based on the system it is installed on:

• On the HIDS Management Console (running MSDE), the HIDS Default Manager policy prevents incoming connections

to the MSDE on the SQL port.

• On a Microsoft SQL server 2000 system, the HIDS default policy accepts incoming connections to SQL; however, the

HIDS buffer overrun logic detects and terminates the Slammer worm’s attempt to invade the system.

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 15 of 22

• On a desktop system, the HIDS Desktop policy prevents incoming connections to the MSDE on the SQL port.

In the case of the SQL Slammer worm the Cisco Security Agent prevented the initial buffer overrun that it exploited, and the

default policies provided additional protection at both the server and desktop level against the propagation of this worm.

NIDS

Because the SQL Slammer attack is contained within a single packet, NIDS cannot stop the attack. NIDS does, however,

provide visibility by sending an alarm when SQL Slammer attacks traverse the network. For more information about NIDS,

visit:

http://www.cisco.com/go/ids

NIDS Attack Signatures

The signatures provided below were added to NIDS systems (Cisco Secure IDS 4215 Sensor, Cisco Secure IDS 4235, and

Cisco Secure IDS 4250 Sensor IDS Module) in many modules of the SAFE Blueprint.

SQL Slammer Worm

String: ”\x04\x01\x01\x01\x01\x01.*[.][Dd][Ll][Ll] "

Occurrences: 1

Port: 1434

Recommended alarm severity level:

• High (VPN and Security Management [VMS])

• 5 (UNIX Director)

The latest NIDS signature database is available fromCisco.com.

Private VLANs

Private VLANs restrict a compromised SQL server from initiating infection attempts against other SQL servers in the same

VLAN, even though they exist in the same network segment.

NBAR

NBAR can recognize the SQL Slammer worm and can immediately classify the traffic and drop the packet before it reaches

the server. It can be used inbound and outbound to mitigate the effects of the SQL Slammer worm. NBAR provides for the

creation of a custom protocol to monitor traffic not normally associated with NBAR. The following is an example

configuration:

Custom Protocol in NBAR

1. Create custom protocol

ip nbar port-map custom-01 udp 1434

2. Create class-map

class-map match-all slammer_worm

match protocol custom-01

match packet length min 404 max 404

http://www.cisco.com/go/ids
http://www.cisco.com

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 16 of 22

3. Use class-based policing to drop the matching packets at the ingress interface

policy-map drop-slammer-worm

class slammer_worm

police 1000000 31250 31250 conform-action drop exceed-action drop violate-action drop

Sink-Hole Routers

Sink-hole routers assist in determining which systems in the environment are infected with SQL Slammer. The sink-hole

router advertises network addresses not yet allocated by IANA so that any attempts to reach those network addresses are

routed to the sink-hole router. When these connection attempts are received, they can be logged and discarded. The logs will

provide a list of infected hosts.

Unicast Reverse Path Forwarding

The Unicast Reverse Path Forwarding (RPF) feature helps mitigate problems caused by the introduction of spoofed IP source

addresses into a network. It works by discarding IP packets that lack a verifiable IP source address. There are two Unicast RPF

checking modes:

• Strict checking mode, which verifies that the source IP address exists and is reachable through the input interface

• Exist-only checking mode, which only verifies that the source IP address exists in the Forwarding Information Base (FIB)

table

Some customers reported that the SQL Slammer worm used IP packets with spoofed addresses and that the use of the

commandip unicast reverse path forwarding provided some appreciable measure of relief from the SQL Slammer worm.

NetFlow Configuration

To configure NetFlow on a NetFlow-capable router to track SQL Slammer infected hosts:

Router# config t
Router# (config) interface serial 0/1
Router#(config-if) ip route-cache flow
Router#(config-if) exit
Router#(config) exit
Router#

After NetFlow has been enabled on the router, the information can be exported to several network management applications.

To export NetFlow statistics:

Router# (config) ip flow-export 192.168.155.1 700

To view NetFlow statistics for port 1434:

Router# show ip cache flow | include 059A

For more information about how to configure NetFlow, visit:

http://www.cisco.com/en/US/products/sw/iosswrel/ps1826/products_configuration_guide_chapter09186a00800880 f9.html

CAR

By using CAR, network engineers can classify and control traffic into and out of their networks, thereby providing a capability

to prevent the bandwidth saturation seen by several service providers during the SQL Slammer worm propagation.

http://www.cisco.com/en/US/products/sw/iosswrel/ps1826/products_configuration_guide_chapter09186a00800880f9.html

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 17 of 22

CAR Configuration

Like NetFlow, CAR can be configured on several Cisco routers. The following configuration is an example:

Router# (config) access-list 150 deny udp any any eq 1434
Router# (config) access-list 150 permit ip any any
Router# (config) interface fastEthernet 0/0
Router# (config-if) rate-limit input access-group rate-limit 150 8000 1500 20000
conform-action drop exceed-action drop
Router# (config-if) exit
Router# (config) exit
Router#

MS Blaster

The most effective method to mitigate the RPC DCOM attack was to patch all vulnerable systems. As with the other worms

discussed in this paper, this patching is difficult with uncontrolled user systems in the local network and even more

troublesome if they are remotely connected to the network through a VPN or RAS. Identifying vulnerable systems can be

simplified through the use of security auditing tools that look for the vulnerabilities that MS Blaster exploits. After vulnerable

systems are identified, they can be patched to remove the vulnerability. Information about attack mitigation on Microsoft

products is available at:

http://microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-026.asp

Access Control

The most effective method to prevent the exploitation of this vulnerability from the Internet is the use of ingress and egress

filters, or ACLs blocking access to ports 135 and 139 (TCP and UDP) as well as port 445 (TCP and UDP). Network

administration best practices provide no need for these ports to be directly Internet-accessible.

Pertaining to RPC DCOM, incoming connections would be blocked from accessing any possibly exploitable user systems or

non-publicly available servers. Ideally, any public servers are under tight administrative control. Also, they have the latest

patches, and access to ports 135 and 139 (TCP and UDP) or port 445 (TCP and UDP) would require the use of a VPN tunnel.

Ingress filtering would, in effect, block any exploitation attempts from the Internet of the RPC DCOM vulnerability targeted

at user systems. However, trusted systems already infected by the RPC DCOM worm and connecting to the corporate network

through a VPN could still infect other systems.

Egress filtering prevents a compromised device from launching a reverse Telnet back to the attacker’s system, because the

traffic will be intercepted and dropped at the network perimeter. For more information about access control and filtering, see

the SAFE Blueprint white papers.

Stateful firewalling provides numerous security features to proactively mitigate the RPC DCOM. First, the stateful inspection

engine can control connection attempts at a more detailed level by validating proper protocol adherence. If ingress filtering is

not used to block external inbound access to vulnerable systems, then outbound filtering should be used to restrict vulnerable

hosts from initiating outbound connections. This limits the ability of an attacker to gain command-line access to the host, and

limits the W32/Blaster worm’s capability to spread.

A sample ingress and egress filter rule to add to existing ACLs is provided below.

http://microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-026.asp

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 18 of 22

Cisco IOS Software ACLs

The Cisco IOS Software ACLs for mitigating the RPC DCOM exploits are provided below.

access-list 101 deny udp any any eq 135
access-list 101 deny tcp any any eq 135
access-list 101 deny udp any any eq 137
access-list 101 deny tcp any any eq 137
access-list 101 deny udp any any eq 139
access-list 101 deny tcp any any eq 139
access-list 101 deny udp any any eq 445
access-list 101 deny tcp any any eq 445
access-list 101 deny tcp any any eq 593
access-list 101 permit ip any any

To block outbound TFTP traffic to prevent the worm version of the exploit from downloading code to a newly infected host:

access-list 102 deny udp any any eq 69

To block outbound traffic to port 4444/TCP that the exploit uses to provide command line access to a Windows target host:

access-list 102 deny tcp any any eq 4444

A more fine-tuned approach would be to create an ACL for the offending RPC DCOM traffic, and then use a class-based

policing to drop the packets at the ingress interface.

1. Create an ACL

access-list 101 deny udp any any eq 135

access-list 101 deny tcp any any eq 135

access-list 101 deny udp any any eq 137

access-list 101 deny tcp any any eq 137

access-list 101 deny udp any any eq 139

access-list 101 deny tcp any any eq 139

access-list 101 deny udp any any eq 445

access-list 101 deny tcp any any eq 445

access-list 101 deny tcp any any eq 593

access-list 101 permit ip any any

2. Match on ACL and packet length

class-map match-all rpc_dcom

match access-group 101

3. Use class-based policing to drop matching packets at the ingress interface

policy-map drop-rpc-dcom

class rpc_dcom

police 8000 1000 1000 conform-action drop exceed-action drop violate-action drop

HIDS

The Cisco Security Agent response to MS Blaster is based on the system it is installed on:

• The default Cisco Security Agent 4.0 server and desktop policies stop successful execution of this attack

• On servers, the default server policy prevents the SVCHOST from attempting to execute CMD.exe. This prevents the

exploit shell code from running.

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 19 of 22

• On desktop systems, the default desktop policy prevents the SVCHOST from accepting a connection on port 4444.

Additional protection is provided by the default policy's prevention of any application from executing CMD.exe.

Because of the sensitive nature of the SVCHOST process in the proper operation of Windows, the Cisco Security Agent

detects the overflow but does not terminate the SVCHOST process. Instead, Cisco Security Agent prevents the host from being

exploited by terminating the CMD.exe process that the buffer overflow in the SVCHOST process creates because of the

exploit.

NIDS

The Cisco IDS Network Security Database (NSDB) includes a signature for the Microsoft Windows RPC DCOM exploit (sig

3327). It is available in IDS signature update S49.

The following custom signature string can be added to address this worm:

To reduce the number of false positives on this signature, consider restricting this signature’s inspection of ports to 137, 139,

and 445 only. For registered customers, the following service pack includes this signature for the RPC DCOM exploit.

ftp://ftp-sj.cisco.com/cisco/crypto/3DES/ciscosecure/ids/4.x/IDS-sig-4.1-1-S49.rpm.pkg

Private VLANs

Private VLANs would restrict a compromised Microsoft Server from initiating infection attempts against other Microsoft

servers in the same VLAN, even though they exist in the same network segment.

NBAR

NBAR can recognize the Microsoft NetBIOS protocol and protocols that use dynamic port assignments. After the traffic has

been classified by NBAR, appropriate QoS policies can be applied to the traffic classes. Unlike NIDS, NBAR can immediately

classify the NetBIOS traffic and drop the packet before it reaches the server. NBAR can be used inbound to mitigate the effects

of the RPC DCOM exploit.

1. Create class-map

class-map match-all msblaster-nbar

match protocol netbios

match packet length min 404 max 404

2. Use class-based policing to drop the matching packets at the ingress interface

policy-map drop-msblaster-worm

class msblaster_worm

Engine : STRING.UDP

SigName : MS Blast Worm TFTP Request

ServicePorts : 69

RegexString : \x00\x01[Mm][Ss][Bb][Ll][Aa][Ss][Tt][.][Ee][Xx][Ee]\x00

Direction : ToService

ftp://ftp-sj.cisco.com/cisco/crypto/3DES/ciscosecure/ids/4.x/IDS-sig-4.1-1-S49.rpm.pkg

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 20 of 22

police 1000000 31250 31250 conform-action drop exceed-action drop violate-action drop

NetFlow

To view NetFlow statistics for port 135, 139, and 445:

Router# show ip cache flow | include 0087
Router# show ip cache flow | include 0089
Router# show ip cache flow | include 01BD

For more information about how to configure NetFlow, visit:

http://www.cisco.com/en/US/products/sw/iosswrel/ps1826/products_configuration_guide_chapter09186a00800880 f9.html

CAR

Analysis of the W32/Blaster worm indicates that it contains code to launch a DoS attack against the Website

windowsupdate.microsoft.com. CAR can be used to reduce the effects of the attack. Like NetFlow, CAR can be configured

on several Cisco routers. The following configuration is an example:

Router# (config) access-list 150 permit udp any any eq 135
Router# (config) access-list 150 permit udp any any eq 139
Router# (config) access-list 150 permit tcp any any eq 135
Router# (config) access-list 150 permit tcp any any eq 135
Router# (config) access-list 150 permit udp any any eq 445
Router# (config) access-list 150 permit tcp any any eq 445
Router# (config) access-list 150 deny ip any any
Router# (config) interface fastEthernet 0/0
Router# (config-if) rate-limit input access-group rate-limit 150 8000 1500 20000
conform-action drop exceed-action drop
Router# (config-if) exit
Router# (config) exit
Router#

For more information about CAR, visit:

http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_configuration_guide_chapter09186a00800c75 ce.html

Conclusion

The technologies discussed in this document not only mitigate the potential damage that known worms can cause, but can also

provide a defense against future worms. It is important to remember that security has its place throughout the infrastructure,

and the discussed technologies prove this. Protecting a network and its resources against worms like CodeRed, NIMDA, SQL

Slammer, and MS Blaster is only the first step. It is necessary to be proactive when it comes to security to protect a network

not only against these worms but also against future network attacks.

Establishing a security policy, implementing some of the discussed features, and regular in-house or outsourced posture

assessments will secure a network and help to keep it secure. This document has addressed a small sampling of the

documented security and network design best practices available from Cisco. For additional information about securing your

network, see the SAFE Blueprint at:

www.cisco.com/go/safe

As with any feature, you should ensure that all devices have sufficient CPU resources available before enabling any of the

features discussed in this document. Also realize, however, that the increased load brought on by enabling these features is

probably significantly less than the load brought on by an internal worm infection.

http://www.cisco.com/en/US/products/sw/iosswrel/ps1826/products_configuration_guide_chapter09186a00800880f9.html
http://windowsupdate.microsoft.com
http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_configuration_guide_chapter09186a00800c75ce.html
http://www.cisco.com/go/safe

Cisco Systems, Inc.
All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement.

Page 21 of 22

As a special note, the SAFE Blueprint was released in October 2000. No design or implementation modifications were

required to address these four worms. Only NIDS signature updates at regular intervals were necessary to detect the specific

exploits associated with each worm. This and other high-profile network exploits constantly provide reminders that designing

network security reactively is not recommended. Only by taking a comprehensive approach to network security founded on

good security policy decisions can an organization be assured that the risks taken are known, and that virtually any potential

threat can be effectively contained.

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

European Headquarters
Cisco Systems International BV
Haarlerbergpark
Haarlerbergweg 13-19
1101 CH Amsterdam
The Netherlands
www-europe.cisco.com
Tel: 31 0 20 357 1000
Fax: 31 0 20 357 1100

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
www.cisco.com
Tel: 408 526-7660
Fax: 408 527-0883

Asia Pacific Headquarters
Cisco Systems, Inc.
Capital Tower
168 Robinson Road
#22-01 to #29-01
Singapore 068912
www.cisco.com
Tel: +65 6317 7777
Fax: +65 6317 7799

Cisco Systems has more than 200 offices in the following countries and regions. Addresses, phone numbers, and fax numbers are listed on the

C i s c o W e b s i t e a t w w w . c i s c o . c o m / g o / o f f i c e s

Argentina • Australia • Austria • Belgium • Brazil • Bulgaria • Canada • Chile • China PRC • Colombia • Costa Rica • Croatia Czech Republic •
Denmark • Dubai, UAE • Finland • France • Germany • Greece • Hong Kong SAR • Hungary • India • Indonesia • Ireland Israel • Italy • Japan • Korea
• Luxembourg • Malaysia • Mexico • The Netherlands • New Zealand • Norway • Peru • Philippines • Poland Portugal • Puerto Rico • Romania • Russia
• Saudi Arabia • Scotland • Singapore • Slovakia • Slovenia • South Africa • Spain • SwedenSwi tzer land • Taiwan • Thai land • Turkey • Ukra ine
• Uni ted Kingdom • Uni ted States • Venezuela • Vietnam • Zimbabwe

All contents are Copyright © 1992–2003 Cisco Systems, Inc. All rights reserved. Cisco, Cisco Systems, the Cisco Systems logo, and Cisco IOS are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other
countries.
All other trademarks mentioned in this document or Web site are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company.
(0304R) ETMG 203149—RD 12.03

	White Paper
	SAFE: Worm Mitigation
	Introduction
	Worm Function
	Worm Anatomy

	Worm Background and Chronology
	Worm Mitigation
	Containment
	Inoculation
	Quarantine
	Treatment
	Worm Mitigation Axioms
	Keep All Systems Patched for Security Vulnerabilities
	Use Host-Based Intrusion Detection Systems (HIDSs) to Protect End Systems
	Deploy Network-Based Intrusion Detection Systems (NIDSs) to Detect Worm Activity
	Use Access Control to Restrict Worm Traffic
	Use Private VLANs to Protect Critical End Systems Within a VLAN
	Network-Based Application Recognition (NBAR)
	Identify Worm Infected Systems
	Use NetFlow to Track Worm Attack Hosts
	Use Sink-Hole Routers to Identify Infected Systems

	Use Committed Access Rate (CAR) to Rate-Limit Traffic
	Implement Virus Scanning Throughout the Network
	Implement Denial of Service Best Practices
	Case Studies
	CodeRed v2

	Host-Based Intrusion Prevention Systems (IPS)
	NIDS
	Access Control

	NBAR
	NIMDA
	Antivirus
	HIDS
	NIDS
	SQL Slammer
	Access Control
	Cisco IOS ACLs

	HIDS
	NIDS
	NIDS Attack Signatures
	SQL Slammer Worm

	Private VLANs
	NBAR
	Custom Protocol in NBAR

	Sink-Hole Routers
	Unicast Reverse Path Forwarding
	NetFlow Configuration

	CAR
	CAR Configuration

	MS Blaster
	Access Control
	Cisco IOS Software ACLs

	HIDS
	NIDS
	Private VLANs
	NBAR
	NetFlow
	CAR
	Conclusion

